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1.     INTRODUCTION 

Accurate modeling of tropical cyclone motion and in- 
tensity change requires resolving the flow both within and 
around the storm. Since the spatial scales in these two 
regions differ substantially, uniform resolution is inherently 
inefficient: the grid should be refined only near the storm. 
This idea motivates conventional nested-grid methods such 
as used in VICBAR (DeMaria et al„ 1992) and the GFDL 
model (Kurihara et al., 1998). Adaptive multigrid methods 
also achieve nonuniform resolution by superimposing uni- 
form grids of different mesh sizes, but they combine this 
idea with multigrid processing (Brandt, 1977) to achieve 
optimum solution speed and provide accurate truncation 
error estimates. The latter can be used in an adaptive mesh 
refinement scheme to provide just the resolution needed at 
each point. 

The MUDBAR model of Fulton (2000) demonstrates 
the potential of adaptive multigrid methods in the context 
of a nondivergent barotropic model. We now consider the 
extension of these techniques to the next level of dynamical 
complexity, i.e., the shallow-water equations. 

2.     MODEL DESCRIPTION 

In this section we briefly describe the model; further 
details can be found in Mitchell and Fulton (2000). 

2.1 Governing Equations 

We work with the shallow-water equations in the form 

Ut + uux + vuy — fv + <px = 0, 

Vt + UVX + Wy + }u + 4>y = 0, (1) 

4>t   +   (<!>  + 4){UX   +  Vy)  +  Ufa   +  V<py   =   0, 

where u and v are the velocity components in x and y, 
respectively, <j> is the deviation of the geopotential gh from 
a constant reference value <t>, and / is the Coriolis param- 
eter. The model domain is a rectangle on.a /?-plane. At 
the boundaries we use open boundary conditions, specify- 
ing the quantity vn -<j>/c (where v„ is the outward normal 
velocity component and c = \/<F); the tangential velocity 
component is also specified where there is inflow. 

2.2 Time Discretization 

To permit using larger time steps than would be al- 
lowed by the CFL condition of an explicit method, we use 
a semi-implicit (leapfrog/trapezoidal) time discretization. 
The resulting implicit equations for the solution [u,v,<j>) 

at a new time level take the form 
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u + At<j>x = F, 

v + At<py = G, 

< + 4>At(ux +vy) = H, 
(2) 

where At is the time step and the right-hand side depends 
on values at the previous time levels. The initial time step 
(second-order Runge-Kutta) takes a similar form. Eliminat- 
ing u and v leads to a Helmholtz problem 

<fi - (cAt)2(<j>xx + <f>yy) = Q = H- <t>Ai(Fx + Gy)   (3) 

to be solved for the geopotential; the corresponding velocity 
components can then be obtained from (2). 

2.3   Space Discretization 

The model is discretized in space using second-order 
centered finite differences on an Arakawa C-grid with mesh 
spacing h. The discretization of (2) is straightforward (but 
requires one-sided differences on the right-hand side when 
discretized at boundary points). The discretization of (3) 
takes the form 

Lh<Ph = Q\ (4) 

where the discrete operator Lh has the difference stencil 
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(5) 

with 7 = cAt/h being the Courant number. 
To apply the boundary conditions we average the nor- 

mal velocity across the boundary (using a ghost point value) 
and eliminate the velocity components using the discretized 
momentum equations to obtain a modified form of (4) ap- 
plied at the boundary. For example, (5) is replaced by 

Lh = 
h2 
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at the west boundary and by 
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(7) 

at the northeast corner; the right-hand side Qh is modified 
similarly. Note that while the system (2) has a staggered 
discretization, the discrete Helmholtz problem (4) involves 
only values at the gridpoints. 
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2.4   Multigrid Solution 

To solve (4) efficiently we use a multigrid method. 
This uses Gauss-Seidel relaxation, full weighting of residu- 
als, and bilinear interpolation of corrections in a Full Multi- 
grid (FMG) algorithm with bicubic initial interpolation. 
Since the boundary conditions are combined with the inte- 
rior equations as described above, proper residual transfers 
must be used at the boundaries. For example, the standard 
full weighting stencil 

16 

is replaced by 
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(8) 

(9) 

at the west boundary and northwest corner, respectively. 
For large time steps (7 » 1) the operator Lh approaches 
the Laplacian operator, and the multigrid smoothing factor 
approaches p, - 0.25 (with red-black ordering); for smaller 
time steps the smoothing factor actually decreases, so the 
performance of the solver improves. 

2.5   Local Mesh Refinement 

The resolution is increased near the vortex by super- 
imposing nested uniform grids of different mesh sizes, in 
the same way as in the MUDBAR model (Fulton, 2000). 
Transfers between grids are more complicated due to the 
staggering of u and v. The only conditions applied at the 
grid interfaces are the same as the open boundary condi- 
tions applied at the domain boundaries, with the specified 
quantities (e.g., vn — <p/c) obtained by interpolating in time 
and space from the next coarser grid. For the results pre- 
sented here we use patches of fixed size which are moved 
to follow the vortex over each time step. 

3.     NUMERICAL RESULTS 

For a simple test case we use a small-scale vortex 
(Gaussian geopotential with e-folding width 112 km) em- 
bedded the sinusoidal zonal current of DeMaria (1985). 
The model domain is a square of side length 4096 km on a 
/3-plane at 20° N with c = 100 m/s, using a base grid with 
h - 32 km and one patch with h = 16 km. Figure 1 shows 
the solution (contours of geopotential and wind vectors) at 
t = 4 hours and t = 48 hours; the smaller square shows the 
boundary of the grid patch. Since the initial condition is in 
geostrophic but not gradient balance, the initial unbalance 
generates a significant gravity wave front which propagates 
cleanly through the grid interface by 4 hours and out of the 
domain long before 48 hours. There is no evidence of false 
reflections or other problems at the grid interface. 
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Figure 1. Sample solution 
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